Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 227
1.
J Neurosci ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724283

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatio-temporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.Significance statement Presynaptic physiology remains poorly understood despite its relevance to neurological and psychiatric diseases. Studying presynaptic functions in human iPSC-derived neurons offers the important advantage of characterizing molecular mechanisms of neurotransmitter release in neurons derived from diseased patients. As a first step towards this goal, we established direct presynaptic whole-cell patch-clamp recordings from human glutamatergic neurons induced by transient Neurogenin 2 overexpression. We furthermore analyzed the structure of the synapses with super-resolution light microscopy and the synaptic short-term plasticity during high-frequency transmission. Our findings show that synchronous high-frequency transmission is mediated by rapid and large presynaptic action potentials in human neurons, similar to small conventional nerve terminals of rodent neurons.

2.
Cell Rep ; 43(4): 114069, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602876

The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.


3' Untranslated Regions , Protein Phosphatase 1 , Animals , Humans , Mice , 3' Untranslated Regions/genetics , Adaptation, Physiological/genetics , AU Rich Elements/genetics , HEK293 Cells , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress, Physiological/genetics , Tristetraprolin/metabolism , Tristetraprolin/genetics
3.
STAR Protoc ; 5(2): 102945, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38573863

The minor phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is crucial for neurotransmission and has been implicated in Parkinson's disease. Here, we present a staining protocol for the analysis of activity-dependent changes of PI(4,5)P2 at synapses. We describe steps for stimulating and fixing murine hippocampal neurons, staining with probes for PI(4,5)P2 and a synaptic marker, and analysis by high-resolution microscopy. Our approach gives insights into local PI(4,5)P2 synthesis and turnover at synapses and can be extended to phosphoinositide lipids other than PI(4,5)P2. For complete details on the use and execution of this protocol, please refer to Bolz et al.1.

4.
Elife ; 122024 Mar 19.
Article En | MEDLINE | ID: mdl-38502163

Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.


Actins , rho GTP-Binding Proteins , Animals , Mice , Signal Transduction , Synaptic Transmission , Endocytosis
5.
Nat Commun ; 15(1): 2093, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453931

Adhesions are critical for anchoring cells in their environment, as signaling platforms and for cell migration. In line with these diverse functions different types of cell-matrix adhesions have been described. Best-studied are the canonical integrin-based focal adhesions. In addition, non-canonical integrin adhesions lacking focal adhesion proteins have been discovered. These include reticular adhesions also known as clathrin plaques or flat clathrin lattices, that are enriched in clathrin and other endocytic proteins, as well as extensive adhesion networks and retraction fibers. How these different adhesion types that share a common integrin backbone are related and whether they can interconvert is unknown. Here, we identify the protein stonin1 as a marker for non-canonical αVß5 integrin-based adhesions and demonstrate by live cell imaging that canonical and non-canonical adhesions can reciprocally interconvert by the selective exchange of components on a stable αVß5 integrin scaffold. Hence, non-canonical adhesions can serve as points of origin for the generation of canonical focal adhesions.


Focal Adhesions , Integrins , Integrins/metabolism , Focal Adhesions/metabolism , Cell-Matrix Junctions/metabolism , Cell Movement , Clathrin/metabolism , Cell Adhesion
6.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Article En | MEDLINE | ID: mdl-38364889

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Disease , Phosphatidylinositols , Signal Transduction , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Humans
7.
Trends Cell Biol ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38395735

Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.

9.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Article En | MEDLINE | ID: mdl-37883971

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Lysosomes , Signal Transduction , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nutrients , Cell Physiological Phenomena
10.
J Med Chem ; 66(20): 14278-14302, 2023 10 26.
Article En | MEDLINE | ID: mdl-37819647

Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.


Class II Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Protein Isoforms , Phosphatidylinositols
11.
Elife ; 122023 10 16.
Article En | MEDLINE | ID: mdl-37843983

Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.


Phosphotransferases (Phosphate Group Acceptor) , Phytic Acid , Animals , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Inositol Phosphates/metabolism , Mammals/metabolism
12.
Science ; 382(6667): 223-230, 2023 10 13.
Article En | MEDLINE | ID: mdl-37824668

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Axonal Transport , Neurons , Phosphatidylinositol Phosphates , Synaptic Vesicles , Humans , Axonal Transport/physiology , Kinesins/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Phosphatidylinositol Phosphates/metabolism
13.
EMBO Rep ; 24(11): e57758, 2023 11 06.
Article En | MEDLINE | ID: mdl-37680133

Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.


Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Lysosomes/metabolism
14.
Neuron ; 111(23): 3765-3774.e7, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37738980

Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.


Synaptic Vesicles , Synaptotagmin I , Animals , Mice , Endocytosis/physiology , Exocytosis/physiology , Lipids , Synaptic Transmission , Synaptic Vesicles/metabolism , Synaptotagmin I/genetics , Synaptotagmin I/metabolism
15.
Proc Natl Acad Sci U S A ; 120(35): e2304323120, 2023 08 29.
Article En | MEDLINE | ID: mdl-37603735

The generation of appropriate behavioral responses involves dedicated neuronal circuits. The cortico-striatal-thalamo-cortical loop is especially important for the expression of motor routines and habits. Defects in this circuitry are closely linked to obsessive stereotypic behaviors, hallmarks of neuropsychiatric diseases including autism spectrum disorders (ASDs) and obsessive-compulsive disorders (OCDs). However, our knowledge of the essential synaptic machinery required to maintain balanced neurotransmission and plasticity within the cortico-striatal circuitry remains fragmentary. Mutations in the large synaptic scaffold protein intersectin1 (ITSN1) have been identified in patients presenting with ASD symptoms including stereotypic behaviors, although a causal relationship between stereotypic behavior and intersectin function has not been established. We report here that deletion of the two closely related proteins ITSN1 and ITSN2 leads to severe ASD/OCD-like behavioral alterations and defective cortico-striatal neurotransmission in knockout (KO) mice. Cortico-striatal function was compromised at multiple levels in ITSN1/2-depleted animals. Morphological analyses showed that the striatum of intersectin KO mice is decreased in size. Striatal neurons exhibit reduced complexity and an underdeveloped dendritic spine architecture. These morphological abnormalities correlate with defects in cortico-striatal neurotransmission and plasticity as well as reduced N-methyl-D-aspartate (NMDA) receptor currents as a consequence of postsynaptic NMDA receptor depletion. Our findings unravel a physiological role of intersectin in cortico-striatal neurotransmission to counteract ASD/OCD. Moreover, we delineate a molecular pathomechanism for the neuropsychiatric symptoms of patients carrying intersectin mutations that correlates with the observation that NMDA receptor dysfunction is a recurrent feature in the development of ASD/OCD-like symptoms.


Compulsive Behavior , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Receptors, N-Methyl-D-Aspartate/genetics , Compulsive Behavior/genetics , Synaptic Transmission , Mice, Knockout
16.
Int J Mol Sci ; 24(10)2023 May 19.
Article En | MEDLINE | ID: mdl-37240354

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


HIV-1 , Humans , HIV-1/physiology , Antiviral Agents/metabolism , Dendritic Cells , Lectins, C-Type/metabolism , Autophagy
17.
Brain ; 146(5): 1812-1820, 2023 05 02.
Article En | MEDLINE | ID: mdl-36866449

N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common subtype of autoimmune encephalitis characterized by a complex neuropsychiatric syndrome usually including memory impairment. Patients develop an intrathecal immune response against NMDARs with antibodies that presumably bind to the amino-terminal domain of the GluN1 subunit. The therapeutic response to immunotherapy is often delayed. Therefore, new therapeutic approaches for fast neutralization of NMDAR antibodies are needed. Here, we developed fusion constructs consisting of the Fc part of immunoglobulin G and the amino-terminal domains of either GluN1 or combinations of GluN1 with GluN2A or GluN2B. Surprisingly, both GluN1 and GluN2 subunits were required to generate high-affinity epitopes. The construct with both subunits efficiently prevented NMDAR binding of patient-derived monoclonal antibodies and of patient CSF containing high-titre NMDAR antibodies. Furthermore, it inhibited the internalization of NMDARs in rodent dissociated neurons and human induced pluripotent stem cell-derived neurons. Finally, the construct stabilized NMDAR currents recorded in rodent neurons and rescued memory defects in passive-transfer mouse models using intrahippocampal injections. Our results demonstrate that both GluN1 and GluN2B subunits contribute to the main immunogenic region of the NMDAR and provide a promising strategy for fast and specific treatment of NMDAR encephalitis, which could complement immunotherapy.


Encephalitis , Hashimoto Disease , Induced Pluripotent Stem Cells , Mice , Animals , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Induced Pluripotent Stem Cells/metabolism , Autoantibodies/metabolism
18.
Neuroscientist ; : 10738584231162810, 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36960757

The neuronal endoplasmic reticulum (ER) consists of a dynamic, tubular network that extends all the way from the soma into dendrites, axons, and synapses. This morphology gives rise to an enormous membrane surface area that, through the presence of tethering proteins, lipid transfer proteins, and ion channels, plays critical roles in local calcium regulation, membrane dynamics, and the supply of ions and lipids to other organelles. Here, we summarize recent advances that highlight the various roles of the neuronal ER in axonal growth, repair, and presynaptic function. We review the variety of contact sites between the ER and other axonal organelles and describe their influence on neurodevelopment and neurotransmission.

19.
bioRxiv ; 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36747849

3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes. By means of spatiotemporally resolved in situ quantitative imaging of PI(3,5)P 2 using a newly developed ratiometric PI(3,5)P 2 sensor we demonstrate that a special pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 pool, the formation of which is mediated by Class II PI3KC2ß and PIKFyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. Cancer-causing mutations of Class I PI3K inhibit the p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown tight regulatory interplay between Class I and II PI3Ks mediated by PI(3,5)P 2 , which may be important for controlling the strength of PI3K-mediated growth factor signaling. These results also suggest a new therapeutic possibility of treating cancer patients with p85 mutations.

20.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Article En | MEDLINE | ID: mdl-36109648

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols , Phosphatidylinositol Phosphates/metabolism
...